The role of α-E-catenin in cerebral cortex development: radial glia specific effect on neuronal migration

نویسندگان

  • Marie-Theres Schmid
  • Franziska Weinandy
  • Michaela Wilsch-Bräuninger
  • Wieland B. Huttner
  • Silvia Cappello
  • Magdalena Götz
چکیده

During brain development, radial glial cells possess an apico-basal polarity and are coupled by adherens junctions (AJs) to an F-actin belt. To elucidate the role of the actin, we conditionally deleted the key component α-E-catenin in the developing cerebral cortex. Deletion at early stages resulted in severe disruption of tissue polarity due to uncoupling of AJs with the intracellular actin fibers leading to the formation of subcortical band heterotopia. Interestingly, this phenotype closely resembled the phenotype obtained by conditional RhoA deletion, both in regard to the macroscopic subcortical band heterotopia and the subcellular increase in G-actin/F-actin ratio. These data therefore together corroborate the role of the actin cytoskeleton and its anchoring to the AJs for neuronal migration disorders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinduction of ErbB2 in astrocytes promotes radial glial progenitor identity in adult cerebral cortex.

Radial glial cells play a critical role in the construction of mammalian brain by functioning as a source of new neurons and by providing a scaffold for radial migration of new neurons to their target locations. Radial glia transform into astrocytes at the end of embryonic development. Strategies to promote functional recovery in the injured adult brain depend on the generation of new neurons a...

متن کامل

Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex.

During neuronal migration to the developing cerebral cortex, neurons regulate radial glial cell function and radial glial cells, in turn, support neuronal cell migration and differentiation. To study how migrating neurons and radial glial cells influence each others' function in the developing cerebral cortex, we examined the role of glial growth factor (a soluble form of neuregulin), in neuron...

متن کامل

Generation and characterization of brain lipid-binding protein promoter-based transgenic mouse models for the study of radial glia.

Radial glia play an essential role in the generation of the cerebral cortex through their function as neuronal precursors and as neuronal migration guides. A molecular marker for radial glia in the developing central nervous system is the brain lipid-binding protein (BLBP). To generate mouse models for the visualization and study of radial glia, we expressed EGFP, EYFP, or dsRed2 in transgenic ...

متن کامل

The lack of Emx2 causes impairment of Reelin signaling and defects of neuronal migration in the developing cerebral cortex.

Neocorticogenesis in mice homozygous for an Emx2 null allele is the topic of this article. The development of both main components of neocortex, primordial plexiform layer derivatives and cortical plate, was analyzed, paying special attention to radial migration of neurons forming the cortical plate. The products of the Reelin gene, normally playing a key role in orchestrating radial migration ...

متن کامل

Ccm3, a gene associated with cerebral cavernous malformations, is required for neuronal migration.

Loss of function of cerebral cavernous malformation 3 (CCM3) results in an autosomal dominant cerebrovascular disorder. Here, we uncover a developmental role for CCM3 in regulating neuronal migration in the neocortex. Using cell type-specific gene inactivation in mice, we show that CCM3 has both cell autonomous and cell non-autonomous functions in neural progenitors and is specifically required...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014